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NOMENCLATURE 

4 .2 ‘c I 
k X, 
k 
l,y’ 

depth of the fluid layer ; 
= -1. 
(E a) wave-number in the x-direction ; 
wave-number in the y-direction ; 
width of the fluid layer ; 

L, length of the fluid layer; 

Pr, Prandtl number; 

Q> flow rate of the fluid = (u)ld; 

Ra, Rayleigh number ; 
Ra”, (Ra’), critical Ravleigh number corresponding to 

Re, 

Re*, 

the onset of co%vection under the form of 
longitudinal (transverse) rolls ; 
Reynolds number using (u) as reference 
velocity ; 
‘critical’ Reynolds number (for which Ra” = 
Ra’); 
mean velocity of the fluid; 
velocity component in the z-direction of a 
perturbation ; 
amplitude of u, ; 
Cartesian coordinates (see Fig. 1); 
( E k,) wave-number in the x-direction ; 
aspect ratio ; 
temperature difference between top and bot- 
tom of the fluid layer); 
thermal diffusivity ; 
length of a Benard cell; 
kinematic viscosity ; 
= oR + ip,: complex growth rate of a 
perturbation. 

1. INTRODUCTION 

ALMOST ten years ago, one of us (J.K.P.) published ‘a 
preliminary experimental investigation of the stability of flows 
with an imposed temperature gradient’ [l]. In that work, 
using heat flow measurements, experimental evidence was 
given that the critical Rayleigh number (corresponding to the 
onset of free convection) is an increasing function of the 
Reynolds number, measuring the Poiseuiile velocity flow. 
These results, as well as other experimental findings (Legros 
et al. [2,3] and Klapitz and Weih [4]) on the stability of flows 
in multi-component systems heated from below, are not 
clearly understood yet. The present paper is a new contri- 
bution to the study of the stability of a Poiseuille flow heated 
from below, i.e. to the Rayleigh BCnard problem with a 
superimposed basic laminar flow. 

In an infinite duct (Fig. 1) bounded by two horizontal rigid 
and conducting plates located at z = 0 and z = d, a liquid 
flows in the x-direction under the effect of a horizontal 
pressure gradient (Poiseuille flow). The system is heated from 
below and, in the absence of Poiseuille flow, free convection, 
with roll-pattern corresponding to a structure with two non- 
vanishing velocity components, is expected when the Ray- 
leigh number exceeds its critical value 1708. For longitudinal 
rolls (0, = W(z) elk,!), it is well known that the critical 
Rayleigh number is unaffected by the flow [5,6], but for 
transverse rolls (u, = I@(z) e”-‘) the critical Rayleigh number 
increases with the Reynolds number [see Fig. 2(a)]. 

Usually, it is concluded that, when free convection occurs, 
the rolls must be longitudinal and that the mean flow has no 
influence on the onset of the secondary flow. However, this is 
only true in an infinite layer, and thus, this theoretical result 
cannot be used to understand completely the experimental 
findings of rl-41. In real containers.(of finite size). it is also 
well known-[7,8], that, in the absence of Poiseuillk flow and 
above the critical point, the rolls are aligned parallel to the 
shorter vertical sides of the box. In this paper, we will not give 
an important significancy to the difference between the Davis’ 
[7] ‘fi m e rolls’ calculations and the more realistic three- ‘t 
dimensional calculations by Davies-Jones [8]. 

In an infinite channel of rectangular cross-section, (Fig. l), 
following the calculations by Davis or Davies-Jones, the 
critical Rayleigh number corresponding to finite transverse 
rolls must be smaller than the one corresponding to 
infinite longitudinal rolls. [Fig. 2(b) Ra’ i Ra”]. If a 
Poiseuille flow is imposed in the x-direction, characterised by 
its Reynolds number Re, Ra” is independent of Re (no effect of 
the Poiseuille flow on infinite longitudinal rolls) ; on the other 
side, Ra’ increases when Re increases (a stabilizing effect of 
the Poiseuille flow is expected when the disturbances are in 
the form of transverse rolls). Therefore, when looking at the 
smallest critical Rayleigh number, we conclude that, if the 
Poiseuille velocitv is small enough (Re -C Re*). rolls are 
aligned parallel to the ‘shorter’ Gdes, with their axis per- 
pendicular to the flow direction (the effect of the side walls is 
dominant). When the shear exceeds some critical value (Re > 
Re*) convection occurs under the form of longitudinal rolls: 
this time, the effect of the flow is dominant. Thus, Re* is a 
particular Reynolds number at which transverse rolls become 
less stable than longitudinal rolls. This number Re* is a 
function of the aspect ratio /I = l/d and of the Prandtl number 
Pr = V/K. The aim of the hydrodynamic stability theory is to 
determine Ra’ = RaL (Re, p, Pr) and Ra” = Ra” (fi) and thus 
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FIG. 1. System of coordinates. In the ‘infinite’ problem, L -) K, 1 + cc 

(a) 

Re 

(b) 

Re 

FIG. 2. Critical Rayleigh number vs Reynolds number. (a) Convection always occurs under the form of 
longitudinal rolls. (b) If Re < Re*, convection occurs under the form of transverse rolls. Re* decreases when 

Pr increases. 

Re* (/I, Pr). This work is now in progress and is to be 
published shortly [9]. 

In the present work, we experimentally prove that trans- 
verse thermoconvective rolls exist when Re -c Re*. At higher 
values of the Reynolds number, the existence of longitudinal 
rolls seems obvious. 

2. WORKING FLUID AND EXPERIMENTAL SET-UP 

Silicone oil with kinematic viscosity of 0.5 cm’ s-i (Fluid 
200 from Dow Coming) is used. Very regular patterns can 
easily be obtained with this component of high Prandtl 
number (Pr g 450) whose physical parameters do not vary 
rapidly with temperature. But, Re* decreases when Pr 
increases [see Fig. 2(b)] and thus, with such a high Prandtl 
number fluid, very small shears have to be used in order to 
observe transverse rolls. From our numerical results [9], we 
found that with Pr = 450 and /I = 5, Re* = O(lO-‘), i.e. a 
veiy small value indeed. However for Pr = O(10) (e.g. water), 
Re* = G(1) and it is of some practical interest to accurately 
know the value of Ret and the flow structure: indeed the 
thermal diffusion studies by the ‘flow cell method’ [2-4] are 
conducted in this range (Re < 4). Anyway, in this study, we 
shall restrict ourselves to silicone oil as working fluid in the 
range Re = 1O-3-1O-2. 

We built an observation cell which is shown as a schematic 
in Fig. 3. Classically, it is constituted by a rectangular frame in 
Plexiglas, inserted between two thick (3 cm), polished copper 
plates. The temperatures of the plates are controlled by flow 
of thermoregulated water. The working volume is 1 x 5.25 x 
93.5 cm3. In theseconditions, /I = I/d = 5.25 and this long cell 
looks like an infinite rectangular duct (L/d cx 100). Silicone 
oil is injected by gravity in this volume through two porous 

media parallel to the smaller sides. These porous media (from 
Porex, Glasrock, Fairburn) are 2 mm thick and high density 
polyethylene constituted, the pore sizes are 3.5 x 10m4 cm. 
The role of the first porous plate is to reduce the residual level 
of turbulence in the inlet part to a very low value, the second, 
located in the outlet part, is to conserve symmetry of the cell. 

The convective structure which is eventually produced is 
observed by a shadowgraph method through the Plexiglas 

I 
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le) (el 

FIG. 3. Experimental set-up. (a) copper plates; (bl), (b2) 
flows of thermoregulated water; (c) reservoir; (d) porous 
medium; (e) temperature measurements; (f) valve; E: 

enclosure. 
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FIG. 4. Visualization of transverse convective rolls. 

FIG. 4(a). Thermal lens effect: schema. 

FIG. 4(b). Characteristic photograph. 

walls by means of the thermal lens effect, A typical photo- 
graph of a part of a structure which can be observed near the 
critical point is shown in Fig. 4. It corresponds to very regular 
transverse rolls whose number is O(10’) (kcri’ = 3.117; Pi = 
2n/3.117 zz 2); thus one roll has a width lerit/2 equal to its 
height. In absence of free convection, or when the rolls are 
longitudinal, a view such as that given in Fig. 4 cannot be 
observed. 

3. EXPERIMENTAL RESULTS 

In all the experiments reported below (Fig. 5) (except in 
runs 0 and 7) we first impose a Poiseuille flow and after this 
we heat from below. Indeed if we first heat the system from 
below at Re = 0, inducing rolls parallel to the shorter sides, 
i.e. transverse rolls, and afterwards if we impose a Poiseuille 
flow, the eventually resulting transverse rolls, could be a 
consequence of these initial conditions. 

Run 0: We first determine the critical temperature 
difference at which free convection sets in and we find ATEd’ 
= 0.95”C + 0.03. This yields a critical Rayleigh number R&’ 
= 1711 + 55 which is in perfect agreement with the 
theoretical value Racrit = 1712 for b = 5.25 [lo]. In the 
93.5 cm between the two porous walls, we observe 92 rolls. 
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This leads to a critical wavenumber kc’” = 3.09 and this is FIG. 5. Experiments. The runs’ numbers are in parentheses. 
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also in agreement with the theory. a large effect. 
Of course, very near the critical point, the time needed to 

produce a regular roll pattern is of the order of two days. This 
is not convenient at all : in the presence of Poise&he flow, the 
time needed to obtain a steady state must be much smaller 
than the residence time of the fluid in the duct. Therefore, we 
increase the temperature difference up to 25°C and we 
observe that 85 transverse rolls appeared. This corresponds 
to an increase of the wavelength which is also in agreement 
with other works (see for instance [ 111 I. 

Let us remark that all the preceding runs were performed 
with Re < Re* (Re* = 6.4 x 10m3 for Pr = 450 and /I = 
5.25). 

Run 1: Total flow rate Q = 210 cm3 in 67 h 59 m = 8.6 x 
lo-“ cm3 s-’ (estimated error 1%); 

Run 7: Re = 11.2 x 10m3 > Re*; AT = 1.2”C. In this last 
run, we first impose AT = 1.2”C, inducing steady transverse 
rolls, which were rapidly pushed out the cell when the 
Poiseuille flow was imposed. Because the porous walls it is 
not possible to observe longitudinal structures in the x- 
direction. However, in run 7 we have an indirect proof of the 
existence of such longitudinal rolls. Indeed, we first stop the 
Poiseuille flow; no transverse structure appeared again, even 
after 24 h. After stopping the thermal gradient during 4 h and 
imposing it back at its initial value, transverse rolls appeared 
again in the whole apparatus with i. = Fit. Indirectly this 
proves theexistenceoflongitudinalrollsat Re = 11.2 x 10e3 
and AT = 1.2”C: when the flow is stopped, these longitudinal 
rolls play the role of an initial condition of finite amplitude, in 
an experiment at Re = 0 and AT = 1.2”C. This initial 
condition prevails over the boundary conditions and inhibits 
the formation of transverse rolls. If we stop heating during 
4 h, the presumed longitudinal rolls are destroyed and 
therefore, after the reset of the thermal gradient, transverse 
rolls have to be obtained back. 

Q 8.6 x lo-“ 
mean velocity {u) = s = ___-_ 

5.25 
= 1.64 x lO_“cm SK’; 

Reynolds number Re = od = 0.328 x low3 : 
v 

temperature difference AT = 25°C. 
After a few hours, we observe 85 transverse rolls which are 

travelling with a velocity greater than (U). They are stable: 
after three days the whole duct is still filled with the same 
number of rolls. 

Run 2: Q = 2.6 x 10-3cm3s-1; 
(u) = 4.95 x LOW4 cm s-i ; 
Re =0.95 x 1O-3; 
AT = 25°C. 

We observed the formation of 87 stable transverse rolls. 
These two runs clearly show that transverse rolls exist and 

are stable at small Reynolds numbers. 

Run 3: Q = 3.7 x 10-3cms-‘; 
(u) = 7.1 x 10e4 cm s-i ; 
Re = 1.4 x 10-s; 

AT = 2.5% 
Transverse roils are formed rapidly near the porous walls 

as soon as the destabilizing temperature gradient is imposed, 
but these rolls look unstable; after one day there remains only 
29 transverse rolls in the last 40 cm of the duct (the outlet part) 
and no structure was visible in the first 60cm of the duct (the 
inlet part). 

Run 4: Same as run 3 but AT = 15°C. After one day, there 
are transverse rolls everywhere, except in the first 12 cm of the 
duct; but after three days the region without visible structure 
has grown till to 34cm. 

Therefore, the rolls are probably less unstable than in run 3. 
Run 5: Q = 5.5 x 10-3cms-‘; 

(u) = 1.05 x 10d3 cm s-’ ; 
Re = 2.1 x IO-‘; 
AT = 25°C. 

Once more, rolls are formed rapidly near the porous 
boundaries but no more structure was visible in the duct the 
day after. We suppose the presence of longitudinal rolls, but 
this is still to be demonstrated. 

These latest runs show that if the shear is increased, 
transverse rolls are more and more difficult to be formed, but 
this situation is not completely understood yet. Indeed the 
pattern depends not only-on the Reynolds number, but also 
on the distance from the critical noint (Ra - RC”) and the 
available theory is only valid ‘for Ra = Ra”“. This is 
illustrated by the following runs. 

Run6: Re = 3.7 x lo-‘; T = 9.2”C.Thedistancefromthe 
critical point has been increased up to Ra = 10Ra”“’ and the 
shear is also increased. We still observed transverse rolls but 
with a completely different size: 2. = 0.8?.“” (%crii is the critical 
wavelength corresponding to RA = Racrir and Re = 0). A 
linear hydrodynamic stability theory cannot account for such 

Thelast question to bediscussed is the velocity at which the 
transverse rolls are convected by the Poiseuille flow. The 
mean velocity is given by {u) = Q/S. Without changing the 
flow rate Q, once the rolls are formed, it is easy to follow the 
image of a particular roll on a screen and to determine the 
velocity U,,, at which this roll is convected. We found that 
this velocity Uro,, is greater than (u). namely 

II ,a,, = 1.38 x (u). 

A possible explanation is the following: in the framework 
of a linear stability analysis, one should write for the z- 
component of the velocity perturbation of transverse rolls 

0,(x, y, z, t) = *(y, z) e(icKr-ot). (I) 

At the critical point, the real part of D is vanishing and 
therefore 

L),(x, y,z, t) = bi’(y, z)ei~@w-o~tJ. (2) 

In our numerical study [9] we fitted the following empirical 
law 

0, - l.SaRePr. (3) 

Remem~ring that in equation (2) all the variables are 
dimensionless and that the scaling factor for the time is d’/K, 
this yields 

u,(x,y,z, t) = lV(q’. z)e’~@x-‘.5(u)r) (4) 

in which all the variables are dimensional. Equation (4) is the 
equation of a travelling wave whose velocity {which should be 
the velocity of the rolls system) is 1.5(u). This result should be 
compared with the experimental value of Uro,, = 1.38(u) 
obtained at Ra z 2.5 Racri’. 

4. CONCLUSION 

We proved the existence of stable transverse rolls at small 
Reynolds numbers and for higher shear values we have an 
indirect proof that the rolls are parallel to the flow direction. 
An accurate experimental determination of Re* is not very 
easy and is now undertaken for different height to width 
ratios and for different fluids in order to study_the influence of 
both Prandtl number and aspect ratio. 
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